Weakly reflective submanifolds and austere submanifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Reflective Submanifolds and Austere Submanifolds

We introduce the notion of a weakly reflective submanifold, which is an austere submanifold with a certain global condition, and study its fundamental properties. Using these, we determine weakly reflective orbits and austere orbits of s-representations.

متن کامل

Almost quaternionic integral submanifolds and totally umbilic integral submanifolds

In literature (Kobayashi and Nomizu, 1963, 1969; Yano and Ako, 1972; Ishihara, 1974; Özdemir, 2006; Alagöz et al., 2012), almost complex and almost quaternionic structures have been investigated widely. These structures are special structures on the tangent bundle of a manifold. A detailed review can be found in Kirichenko and Arseneva (1997). Let us recall some basic facts and definitions from...

متن کامل

Minimal Submanifolds

Contents 1. Introduction 2 Part 1. Classical and almost classical results 2 1.1. The Gauss map 3 1.2. Minimal graphs 3 1.3. The maximum principle 5 2. Monotonicity and the mean value inequality 6 3. Rado's theorem 8 4. The theorems of Bernstein and Bers 9 5. Simons inequality 10 6. Heinz's curvature estimate for graphs 10 7. Embedded minimal disks with area bounds 11 8. Stable minimal surfaces ...

متن کامل

Statistical cosymplectic manifolds and their submanifolds

    In ‎this ‎paper‎, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal...

متن کامل

Deformations of Calibrated Submanifolds

Assuming the ambient manifold is KK ahler, the theory of complex sub-manifolds can be placed in the more general context of calibrated submanifolds, see HL]. It is therefore natural to try to extend some of the many results in complex geometry to the other calibrated geometries of HL]. In particular, the question of deformability of calibrated submanifolds is addressed here (analogous to Kodair...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 2009

ISSN: 0025-5645

DOI: 10.2969/jmsj/06120437